COLLEGE: MBP GOVT. P.G. COLLEGE, ASHIANA, LUCKNOW ACADEMIC CALENDAR : SESSION- (2023-2024)

NAME OF TEACHER: DR. POONAM BAJPAI DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC (NEP)-I YEAR (I SEMESTER) (APPLICABLE FROM JULY 2023)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY / WEEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL			
01	02	03	04	05	06	07	08	09			
1	BSC (NEP) I YEAR, I	P-1 (MAJOR)	variables an 2. Sketch cu 3. Apply de	urse Outcomes: 1. Know the concepts of calculus, namely, limits, continuity, differentiability of functions of one riables and their applications in the form of mean value theorem and Taylor's theorem. Sketch curves in a plane using its mathematical properties in the different coordinate systems of reference. Apply derivatives in Optimization, Social sciences, Physics and Life sciences etc. Get knowledge of curvature, asymptotes, envelopes and evolutes.							
	SEMESTER CREDITS-4 T:04	DIFFERENTIAL CALCULUS	UNIT-I	Limit, continuity and differentiability of function of single variable, Cauchy's definition, Heine's definition, Uniform continuity, Borel's theorem, boundedness theorem, Bolzano's theorem, Intermediate value theorem, extreme value theorem, Darboux's intermediate value theorem for derivatives, Chain rule, indeterminate forms.	MIN. 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
			UNIT-II	Rolle's theorem, Lagrange and Cauchy Mean value theorems, mean value theorems of higher order, Taylor's theorem with various forms of remainders,	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH			

	Successive differentiation, Leibnitz theorem, Maclaurin's and Taylor's series, Limit and Continuity of functions of two variables, Differentiation of function of two variables, Necessary and sufficient condition for differentiability of functions two variables.				WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-III	Partial differentiation, Euler's theorem on homogeneous function, Schwarz's and Young theorem, Taylor's theorem for functions of two variables with examples, Maxima and minima for functions of two variables, Lagrange multiplier method, Jacobians, Inverse function theorem and implicit function theorem.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Tangents and normals, Asymptotes, Curvature, Envelops and evolutes, Tests for concavity and convexity, Points of inflexion, Multiple points, Parametric representation of curves and tracing of parametric curves, Tracing of curves in Cartesian and Polar forms.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
2. S. Balach Suggested		al Calculus, Ne S. Davis, Calcu	lus, John Wiley and Sor	ns, Inc.,2002. 4.	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

			https://oper http://heec https://ww	rences: 1.Digital platforms web links: <u>nlearninglibrary.mit/edu/courses</u> content.upsdc.gov.in/SearchContent.as w.lkouniv.ac.in/en/article/e-content-f	s <u>px</u> aculty-of-scienc	<u>ce</u>	x.org		
2	BSC (NEP) I YEAR, I SEMESTER	P-2 (MAJOR)	 <u>Course Outcomes:</u> 1. Find the rank and eigen values of matrices. 2. Study the system of linear homogeneous and non-homogeneous equations. 3. Recognize the mathematical objects that are groups, and classify them as abelian, cyclic and permutation groups, etc. 4. Link the fundamental concepts of Groups and symmetrical figures. 5. Analyze the subgroups of cyclic groups. 6. Explain the significance of the notion of cosets, normal subgroups, and factor group. 7. Understand the concepts of rings, subrings and fields. 						
	CREDITS-4 T:04	MATRICES & ALGEBRA	UNIT-1	Elementary operations on matrices, Rank of a matrix, Echelon and normal form of a matrix, Inverse of a matrix by elementary operations, System of linear homogeneous and non- homogeneous equations, Theorems on consistency of a system of linear equations. Eigen values, Eigen vectors and characteristic equation of a matrix, Cayley-Hamilton theorem and its use in finding inverse of a matrix.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
			UNIT-II	Equivalence relations and partitions, Congruence modulo n, Definition of a group with examples and simple properties, Subgroups, Generators of a group, Cyclic groups, Coset decomposition, Lagrange's theorem and its consequences, Fermat and Euler theorems.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	

UNIT-III	Homomorphism and isomorphism, Fundamental theorem of homomorphism, Theorems on isomorphism, Permutation groups, Even and odd permutations, The alternating group, Cayley's theorem, Direct products.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Rings, types of rings (commutative rings, rings with unity, division rings, Integral domains and fields) with examples, basic properties, sub- rings, Characteristic of a ring, Ideals and quotient rings, Ring homomorphism, Isomorphism theorems, Field of quotient of an integral domain, polynomial rings.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
2. V. Sahai Suggested Topics in A Web Refer https://ope http://heec		Course in Abstr NPTEL/SWAY <u>spx</u>	AM/ MOOCS/Opensta		FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

	BSC (NEP)		Course Out	comes:				
3	I YEAR,	<mark>P-</mark> 1	and their app		-			-
	I SEMESTER	(MINOR)	value theorem 3. To unders	the concepts of calculus, namely, lim m and Taylor's theorem. tand the concept of double and triple tand the concepts of vector calculus.		-		
	CREDITS-4		1. 10 unders	Types of matrices, elementary		OFFLINE	STUDENTS	EVALUATION
	T:04	APPLICABLE MATHEMATIC S- I	UNIT-I	operations on matrices, rank of a matrix, echelon and normal forms of a matrix, inverse of a matrix by elementary operations, systems of linear homogeneous and non - homogeneous equations, consistency of linear system of equations, eigenvalues, eigenvectors and characteristic equation of a square matrix, Cayley - Hamilton theorem and its application in finding the inverse of a matrix.	MIN 09 LECTURES	TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	WILL GET THE UNDERSTA NDING OF THE TOPIC DISCUSSED	THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS
			UNIT-II	Limit, continuity and differentiability of functions of single variable, successive differentiation, Leibnitz's theorem, Rolle's theorem, Lagrange's and Cauchy's mean value theorems, Taylor's and Maclaurins's series with various forms of remainders.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTA NDING OF THE TOPIC DISCUSSED	

Limit, continuity and differentiability of functions of two variables, partial derivatives, Euler's theorem for homogeneous functions, total derivative, Taylor's and Maclaurins's theorem for functions of two variables, extrema of functions of two variables, Lagrange's method of unknown multipliers, Jacobian.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTA NDING OF THE TOPIC DISCUSSED	EVALUATE THE PERFORMANCE EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
Double and triple integration, change of order of integration, application of integration to length, surface and volumes (only Cartesian coordinates), beta, gamma and Dirichlet's integral – basic properties with applications, vector differentiation, gradient, divergence and curl with their physical interpretations, tangent and normal on a surface, directional derivative, line, surface and volume integrals, applications of	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTA NDING OF THE TOPIC DISCUSSED	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

		Green's, Stoke's and Gauss' divergence theorems (without proofs).			
	References	:			FINAL
	Textbooks				EVALUATION
	1. Linear A	lgebra by K. Hoffman and R. Kur	nze.		THROUGH
	2. Calculus,	, Volumes I & II by T. M. Aposto	1.		INTERNAL
	3. Mathema	tical Analysis by S.C. Malik and	S. Arora, New Age	International	ASSESMENT
	Limited, Ne	ew Delhi.			UPLODED ON
	Suggested I	Books			LU EXAM
	1. R. R. Go	ldberg : Methods of Real Analysis	s, Oxford & IBH Pu	b. Co. Pvt. Ltd.	PORTAL
	2. R. G. Ba	rtle, The Elements of Real Analys	is, Wiley Internatio	nal Edition.	

COLLEGE: MBP GOVT. P.G. COLLEGE, ASHIANA, LUCKNOW ACADEMIC CALENDAR : SESSION- (2023-2024)

NAME OF TEACHER: DR. POONAM BAJPAI DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC (NEP)-I YEAR (II SEMESTER) (APPLICABLE FROM JANUARY 2024)

					· · ·	1	1	1
S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY/W EEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
1	BSC (NEP) I YEAR, II SEMESTER CREDITS-4 T:04	P-3 (MAJOR) INTEGRAL CALCULUS	Course O 1. Some of theorems o 2. Beta and 3. The vali- approxima		emann integrat erties. pility of differe 1 terms of pow	ole functions, and the a entiability and integrable er series. 4. Compute a	pplications of the	fundamental sum, and
			UNIT-II	Improper integrals, their classification and convergence, Comparison test, µtest, Abel's test, Dirichlet's test, quotient test, Beta and Gamma functions.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND

UNIT-J	Rectification, Volumes and	MIN	OFFLINE TEACHING	STUDENTS WILL	DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE EVALUATION
	Surfaces of Solid of revolution, Pappus theorem, Multiple integrals, change of order of double integration, Dirichlet's theorem, Liouville's theorem for multiple integrals.	09 LECTURES	METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-I	V Vector Differentiation, Gradient, Divergence and Curl, Normal on a surface, Directional Derivative, Vector Integration, Theorems of Gauss, Green, Stokes and related problems.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
2. Shar Sugges Sons. Web R https:// http://		culus, S. Chand dvanced Engin ks: NPTEL/SW ent.aspx	eering Mathematics, Jo VAYAM/ MOOCS/Op	·	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

2	BSC (NEP) – I YEAR, I I SEMESTER	P-4 (MAJOR)	Course On 1. To learn 2. To descu 3. To gain					
	CREDITS-4 T:04	GEOMETRY	UNIT-I	General equation of second degree, System of conics, Tracing of conics, Confocal conics, Polar equation of conics and its properties.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILLGET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-II	Three-Dimensional Coordinates, Projection and Direction Cosine, Plane (Cartesian and vector form), Straight line in three dimension (Cartesian and vector form).	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-III	Sphere, Cone and Cylinder.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-IV	Central conicoids, Paraboloids, Plane section of conicoids, Generating lines, Confocal	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND

				conicoids, Reduction of second degree equation.	1	VIDEO,CLASS ROOM TEACHING METHOD)		DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			2. S. L. L Suggested 3. Robert - Ltd Web Ref https://ope http://hee	oks: Vittal, Analytical Geometry oney, The Elements of Coordinate l Readings: J.T. Bell, Elementary Treatise on C Gerences: Digital platforms web lin enlearninglibrary.mit/edu/courses content.upsdc.gov.in/SearchConter	Coordinate Geometr ks: NPTEL/SWAY. <u>nt.aspx</u>	y of three dimensions, l AM/ MOOCS/Opensta		FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
	BSC (NEP) –	D 2		w.lkouniv.ac.in/en/article/e-conter	nt-faculty-of-science	2		
3	BSC (NEP) – I YEAR,	<mark>P</mark> -2	Course Ou 1. To under	Itcomes: Istand the concepts of groups, subg	roups, cyclic group	s, quotient groups and h	nomomorphism of	
	I I SEMESTER	(MINOR)	groups. 2. To Know	v the concepts of rings, subrings, ic the concept of vector spaces, its b	leals, quotient rings	and homomorphism of	rings.	
	CREDITS-4		transformat	tions.				
	T:04	APPLICABL E MATHEMAT ICS- II	UNIT- I	sequences and various tests to chear Equivalence relations and partitions, congruence modulo n, groups, subgroups, cyclic groups, coset decomposition, Lagrange's theorem, Fermat's & Euler's theorems, normal subgroups, quotient groups, homomorphism and homomorphism theorems.	ck convergence of a MIN 09 LECTURES	n infinite series. OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-	Rings, types of rings - commutative rings, rings with unity, division rings, integral	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND

	domains and fields, subrings, ideals and quotient rings, ring homomorphism and homomorphism theorems, characteristic of a ring, Polynomial rings.		VIDEO,CLASS ROOM TEACHING METHOD)		ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT- IV	Vector spaces, subspaces, linear independence and dependence, basis and dimension, quotient space, linear transformations and their representation as matrices, rank - nullity theorem.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	Sequences, limit of a sequence, convergence, divergence and oscillation of a sequence, infinite series and its convergence, geometric and harmonic series, tests for convergence and divergence - comparison test, Cauchy integral test, D'alembert's ratio test, Cauchy's nth root test, Raabe's logarithmic test, DeMorgan and Bertrand's test, alternating series, absolute and conditional convergence, Leibnitz's theorem (without proof).	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	es:	ı ora, Narosa.	1		FINAL EVALUATION THROUGH INTERNAL ASSESMENT

	3. R.G. Bartle : Introduction to Real Analysis, Wiley. Suggested books	UPLODED ON LU EXAM PORTAL
	1. J.B. Fraleigh : A First course in Abstract Algebra, Pearson.	
	2. D.S. Dummit & R.M. Foote : Abstract Algebra, Wiley International edition.	

COLLEGE: MBP GOVT. P.G. COLLEGE, ASHIANA, LUCKNOW ACADEMIC CALENDAR : SESSION- (2023-2024)

NAME OF TEACHER: DR. POONAM BAJPAI DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: **BSC (NEP)-II** YEAR (**III SEMESTER**) (APPLICABLE FROM SEPTEMBER 2023)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY / WEEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
1	BSC (NEP) – II YEAR,	P-5 (MAJOR)	2. Solve fir	utcomes: te Differential Equations for various I st order non-linear differential equations ese techniques to solve and analyze v	on and linear dif	ferential equations of high	gher order using va	rious techniques.
	III SEMESTER CREDITS-4 T:04	ORDINARY DIFFERENTIAL EQUATIONS	UNIT-I	Differential Equations of first order and first degree, variable separable equations and equations reducible to this form, linear equations and Bernoulli equations, Exact differential equations and integrating factors, special integrating factors and transformations. Differential Equations of first order and higher degree, Clairaut equation, singular solutions. Orthogonal trajectories.	MIN. 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-II	Linear Differential Equations with constant coefficients, homogeneous linear equation with constant coefficients, Wronskian,	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND

	its properties and applications. Second order linear differential equations with variable coefficients: Use of a known solution to find another, normal form, method of undetermined coefficient, variation of parameters,		VIDEO,CLASS ROOM TEACHING METHOD)		DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
UNIT-III	Systems of first order equations, linear systems, homogeneous linear systems with constant coefficients, Volterra's prey predator equations, Existence and uniqueness of solutions, method of successive approximations, Picard's theorem, Application to systems of first order equations.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
UNIT-IV	Series solutions of differential equations, Power series method. Bessel, Legendre and Hypergeometric functions and their properties, recurrence and generating relations.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
Text Book1. B. Rai, J2. S. L RosSuggested3. G.F. SimMcGraw H	References:Text Books:1. B. Rai, D.P. Choudhary & H.J. Freedman, A Course in Differential Equations.2. S. L Ross, Differential Equations, 3rd Edition, WileySuggested Reading:3. G.F. Simmons, Differential Equations with Applications and Historical Notes, Tata McGraw HillWeb References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org							

				penlearninglibrary.mit/edu/co				
				econtent.upsdc.gov.in/SearchC		0 1. 0 1		
				<u>www.lkouniv.ac.in/en/article</u>	<u>e/e-content-l</u>	taculty-of-science		
2	BSC (NEP)	<mark>P-6</mark>	Course O 1. The sign	utcomes: ificance of mathematics involved in p	ohysical quantiti	es and their uses.		
	– II YEAR,			standing the various concepts of basic		e simple harmonic motio	n, motion under oth	er laws and forces.
		(MAJOR)	3. To study	and to learn the cause-effect related	to these.			
	I I I SEMESTER		4. The appl	ications in observing and relating rea	l situations/strue			EN AL MATION
	CREDITS-4		UNIT-1	Frame of reference, work energy principle, Forces in three	MIN	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE	EVALUATION THROUGH
	T:04	MECHANICS		dimensions, Poinsot's central axis, Wrenches, Null lines and planes.	09 LECTURES	(NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	UNDERSTANDING OF THE TOPIC DISCUSSED.	MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-II	Virtual work, Stable and Unstable equilibrium, Catenary, Catenary of uniform strength.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-III	Velocities and accelerations along radial and transverse directions, and along tangential and normal directions, Simple Harmonic motion, Motion under other law of forces. Elastic strings, Motion in resisting medium, Constrained motion, Motion on smooth and rough plane curves.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

			UNIT-IV	Motion of particles of varying mass, Rocket motion, Central orbit, Kepler's laws of motion, Motion of particle in three dimensions, Rotating frame of reference, Rotating Earth, Acceleration in terms of different coordinates systems.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
			1. R.C. Hib 2. Nelson, H Suggested 3. J.L. Syng Web Refe https://op http://hee	References: FI Sext Books: FI . R.C. Hibbeler, Engineering Mechanics-Statistics IN . Nelson, Engineering Mechanics- Dynamics, Tata McGraw Hill AS Suggested Readings: III . J.L. Synge & B.A. Griffith, Principles of Mechanics, Tata McGraw Hill EX Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org EX https://openlearninglibrary.mit/edu/courses attps://www.lkouniv.ac.in/en/article/e-content.aspx							
3	BSC (NEP) – II YEAR, III SEMESTER	P-3 (MINOR)	2. Study the3. Recogniz4. Link the5. Analyze	 Course Outcomes: 1. Find the rank and eigen values of matrices. 2. Study the system of linear homogeneous and non-homogeneous equations. 3. Recognize the mathematical objects that are groups, and classify them as abelian, cyclic and permutation groups, etc. 4. Link the fundamental concepts of Groups and symmetrical figures. 5. Analyze the subgroups of cyclic groups. 6. Explain the significance of the notion of cosets, normal subgroups, and factor group. 							
	CREDITS-4 T:04	MATRICES & ALGEBRA	UNIT-1	Elementary operations on matrices, Rank of a matrix, Echelon and normal form of a matrix, Inverse of a matrix by elementary operations, System of linear homogeneous and non- homogeneous equations, Theorems on consistency of a	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			

	 system of linear equations. Eigen values, Eigen vectors and characteristic equation of a matrix, Cayley-Hamilton theorem and its use in finding inverse of a matrix. Equivalence relations and partitions, Congruence modulo n, Definition of a group with examples and simple properties, Subgroups, Generators of a group, Cyclic groups, Coset decomposition, Lagrange's theorem and its consequences, Fermat and Euler theorems. Normal subgroups, Quotient groups. 	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-III	Homomorphism and isomorphism, Fundamental theorem of homomorphism, Theorems on isomorphism, Permutation groups, Even and odd permutations, The alternating group, Cayley's theorem, Direct products.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Rings, types of rings (commutative rings, rings with unity, division rings, Integral domains and fields) with examples, basic properties, sub- rings, Characteristic of a ring, Ideals and quotient rings, Ring homomorphism, Isomorphism	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

	theorems, Field of quotient of an integral domain, polynomial rings.			
2. V. Sal Suggeste Topics in Web Re https://o http://he		ourse in Abstrac NPTEL/SWAYA	AM/ MOOCS/Openstax.o	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

COLLEGE: MBP GOVT. P.G. COLLEGE, ASHIANA, LUCKNOW

ACADEMIC CALENDAR : SESSION- (2023-2024)

NAME OF TEACHER: DR. POONAM BAJPAI

DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC (NEP)-II YEAR (IV SEMESTER) (APPLICABLE FROM JANUARY 2024)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY/W EEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL			
01	02	03	04	05	06	07	08	09			
1	BSC (NEP)	P-7		irse Outcomes:							
	II YEAR,	(MAJOR)		op mathematical skills in calculus an nowledge of Laplace Transforms and	•						
	I V SEMESTER	MATHEMATICAL METHODS	Ū.	equainted with the essentials of calcu							
	CREDITS-4 T:04		UNIT-I	Definition of a sequence, theorems on limits of sequences, bounded and monotonic sequences,	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC	EVALUATION EVALUATION THROUGH MONTHLY MOCK			
				Cauchy's convergence criterion, Cauchy sequence, limit superior and limit inferior of a sequence, subsequence, Series of non- negative terms, convergence and divergence, Comparison tests, Cauchy's integral test, Ratio tests, Root test, Raabe's logarithmic test, de Morgan and Bertrand's tests, alternating series, Leibnitz's theorem, absolute and conditional convergence. Sequences and series of functions: point wise and uniform convergence of sequences of functions, consequences of uniform convergence, integration and differentiation of series of functions.		PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	DISCUSSED.	TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
			UNIT-II	Existence theorems for Laplace transforms, Linearity of Laplace transform and their properties, Laplace transform of the	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND			

UNIT-III	derivatives and integrals of a function, Convolution theorem, inverse Laplace transforms, Solution of the differential equations using Laplace transforms. Fourier series, Fourier expansion of piecewise monotonic functions,	MIN 09 LECTURES	VIDEO,CLASS ROOM TEACHING METHOD) OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDING	DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE EVALUATION THROUGH MONTHLY MOCK		
	Half and full range expansions, Fourier transforms (finite and infinite), Fourier integral.		(NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	OF THE TOPIC DISCUSSED.	TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
UNIT-IV	Calculus of variations-Variational problems with fixed boundaries- Euler's equation for functionals containing first order derivative and one independent variable, Extremals, Functionals dependent on higher order derivatives, Functionals dependent on more than one independent variable, Variational problems in parametric form.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
Text Bool1. T.M. Ay2. RG BarSuggested3. G.F. SiMcGraw I	References: Text Books: 1. T.M. Apostol. Mathematical Analysis, Pearson 2. RG Bartle, Introduction to Real Analysis, Wiley India Suggested Readings: 3. G.F. Simmons, Differential Equations with Applications and Historical Notes, Tata-McGraw Hill 4. A.S. Gupta, Calculus of Variations with Applications Prentice Hall India.						

			Web Refer	ences: Digital platforms web lir	nks: NPTEL/S	WAYAM/ MOOCS/C	penstax.org				
				enlearninglibrary.mit/edu/cou		, / _	. 0				
			http://hee	econtent.upsdc.gov.in/SearchCo	ontent.aspx						
			https://www	v.lkouniv.ac.in/en/article/e-content-f	aculty-of-science	<u>ce</u>					
2	BSC (NEP) – II YEAR,	<mark>P-8</mark>		ourse Outcomes: The fundamental concept of Rings, Fields, subrings, integral domains and the corresponding morphisms.							
	IV	(MAJOR)	2. The conce	The concept of linear independence of vectors over a field, the idea of basis and the dimension of a vector space.							
	SEMESTER	3. Basic concepts of linear transformations, the Rank-Nullity Theorem, matrix of a linear transformation and									
	CREDITS-4		basis.								
	T:04			hisms for constructing new groups fr	0 0	*					
	1:04	LINEAR	-	ions, Sylow theorems and their applic		· ·					
		&		inner products and determine orthog							
		ABSTRACT ALGEBRA	UNIT-I	Automorphism, inner automorphism, automorphism groups and their computations, Conjugacy relations, Normaliser, Counting principle and the class equation of a finite group, Center of group of prime power order, simple groups, Group action, Burnside lemma, Sylow theorems and its applications.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILLGET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
			UNIT-II	Prime and maximal ideals, Euclidean Rings, Principal ideal rings, Polynomial Rings, Polynomial over the Rational Field, The Eisenstein Criterion, Polynomial Rings over Commutative Rings, unique factorization domain.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
			UNIT-III	Vector spaces, Subspaces, Linear independence and dependence of vectors, Basis and dimension,	MIN 09 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDING	EVALUATION THROUGH MONTHLY MOCK TESTS AND			

				Quotient space, Linear transformations, Direct sums, The Algebra of linear transformations, rank nullity theorem, their representation as matrices, Linear functionals, Dual space, Characteristic values, Cayley Hamilton Theorem.		(NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	OF THE TOPIC DISCUSSED.	ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
			UNIT-IV	Inner product spaces, Cauchy- Schwarz inequality, Orthogonal vectors, Orthonormal sets and bases, Bessel's inequality for finite dimensional spaces, Gram- Schmidt orthogonalization process, Bilinear and Quadratic forms.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
			References Text Book 1. Topics in J					FINAL EVALUATION THROUGH INTERNAL ASSESMENT		
				y V. Sahai and V. Bist gebra by V. Sahai and V. Bist Boodings:				UPLODED ON LU EXAM PORTAL		
			4. Linear Alg	gebra by K. Hoffman and R. Kunze. ences: Digital platforms web lir enlearninglibrary.mit/edu/cou		WAYAM/ MOOCS/(Openstax.org			
			http://hee	econtent.upsdc.gov.in/SearchCoww.lkouniv.ac.in/en/article/	ontent.aspx	culty-of-science				
3	BSC (NEP) – II YEAR,	<mark>P-</mark> 4	Course On 1. To learn	<u>Course Outcomes:</u> 1. To learn and visualize the fundamental ideas of coordinate geometry.						
	IV SEMESTER	(MINOR)		ribe some surfaces by using analyt knowledge about regular geometr	•	d their properties.				
	CREDITS-4		UNIT-I	General equation of second degree, System of conics,	MIN 09 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILLGET THE UNDERSTANDING	EVALUATION THROUGH MONTHLY MOCK		

T:04 G	EOMETRY	Tracing of conics, Confocal conics, Polar equation of conics and its properties.		(NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	OF THE TOPIC DISCUSSED.	TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	UNIT-II	Three-Dimensional Coordinates, Projection and Direction Cosine, Plane (Cartesian and vector form), Straight line in three dimension (Cartesian and vector form).	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	UNIT-III	Sphere, Cone and Cylinder.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	UNIT-IV	Central conicoids, Paraboloids, Plane section of conicoids, Generating lines, Confocal conicoids, Reduction of second degree equation.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	<mark>References</mark> Text Book		1			FINAL EVALUATION THROUGH

 P. R. Vittal, Analytical Geometry S. L. Loney, The Elements of Coordinate Geometry, Macmillan Suggested Readings: Robert J.T. Bell, Elementary Treatise on Coordinate Geometry of three dimensions, Macmillan India Ltd Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses 	INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
http://heecontent.upsdc.gov.in/SearchContent.aspx https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science	

COLLEGE: MBP GOVT. P.G. COLLEGE, ASHIANA, LUCKNOW

ACADEMIC CALENDAR : SESSION- (2023-2024)

NAME OF TEACHER: DR. POONAM BAJPAI

DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC(NEP)-III YEAR (V SEMESTER) (APPLICABLE FROM SEPTEMBER 2023) EACH PAPER CARRIES 100 MARKS (4

CREDITS)

S.NO.	CLASS (YEAR,	PAPER	UNIT	TOPIC NAME	MONTHLY/ WEEKLY	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL				
	SEMESTER)				PLAN	TEDROOGT	orreomils	DEIME				
01	02	03	04	05	06	07	08	09				
I	BSC (NEP) -III YEAR, V SEM CREDITS-4 T:04	P-09 NUMERICAL ANALYSIS	 Some nu equations, u Interpola Application 	Course Outcomes: Some numerical methods to find the zeroes of nonlinear functions of a single variable and solution of a system of li equations, up to a certain given level of precision. Interpolation techniques to compute the values for a tabulated function at points not in the table. Applications of numerical differentiation and integration to convert differential equations into difference equations numerical solutions.								
			UNIT-I	Solution of equations: bisection, Secant, Regular Falsi, Newton Raphson's method, Newton's method for multiple roots, Interpolation, Lagrange and Hermite interpolation, Difference schemes, Divided differences, Interpolation formula using differences.	MIN. 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE				
			UNIT-II	Numerical differentiation, Numerical Quadrature: Newton	MIN 06 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDING	EVALUATION THROUGH MONTHLY MOCK				

	Cotes Formulas, Gaussian Quadrature Formulas, System of Linear equations: Direct method for solving systems of linear equations (Gauss elimination, LU Decomposition, Cholesky Decomposition), Iterative methods (Jacobi, Gauss Seidel, Relaxation methods). The Algebraic Eigen Value problem: Jacobi's method, Givens method, Power method.		(NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	OF THE TOPIC DISCUSSED.	TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
NIT-III	Numerical solution of Ordinary differential equations: Euler method, single step methods, Runge-Kutta method, Multi-step methods: Milne-Simpson method, Types of approximation: Last Square polynomial approximation, Uniform approximation, Chebyshev polynomial approximation.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
NIT-IV	Difference Equations and their solutions, Shooting method and Difference equation method for solving Linear second order differential equation with boundary conditions of first, second and third type.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	Books: nerical Methods for Engineering and ngar & R.K. Jain.	scientific com	putation by M. K. Jain, S	.R.K.	FINAL EVALUATION THROUGH INTERNAL

			Suggested 3. Kandasar Web Refer Digital plat https://oper http://heeco	2. Introductory methods of Numerical Analysis by S. S. Sastry Image: Suggested Readings: 3. Kandasamy P. & et Al., Numerical Methods, S. Chand & Co. Image: Suggested Readings: Web References: Image: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses Image: Suggested Readings: https://heecontent.upsdc.gov.in/SearchContent.aspx Image: Suggested Readings: https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science Image: Suggested Readings:						
Π	BSC (NEP) -III YEAR, V SEM CREDITS-4 T:04	P-10 ANALYSIS	 2. Know the 3. Understand equations. 4. Evaluate 5. Expand s 	 and the basic concepts of metric space e concepts such as open balls, closed nd the significance of differentiability the contour integrals and understand some simple functions as their Taylor hy Residue theorem to evaluate integ Definition and examples of metric spaces, Neighborhoods, Interior points, Limit Points, Open and closed sets, Convergent and Cauchy sequences, Completeness, Cantor's intersection theorem. Uniform convergence of sequences and series of functions, Uniform convergence and convergence and differentiation, Power series. Stereographic projection, Continuity and Differentiability of complex functions, Analytic 	balls, compact of complex va the role of Car and Laurent s rals.	lued functions leading to tuchy-Goursat theorem and	d the Cauchy integra	al formula.		

	functions, Cauchy Riemann equations, Harmonic functions.		VIDEO,CLASS ROOM TEACHING METHOD)		DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-III	Complex integration, Cauchy- Goursat theorem, Cauchy's Integral formula, Formulae for first, second and nth derivatives, Cauchy's Inequality, Liouville's Theorem, Elementary functions, Mapping by elementary functions, conformal mapping.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Taylor and Laurent Series, Absolute and uniform convergence of Power series, Residues and Poles, Residue theorem, Zeros and poles of order m, Evaluation of improper real integrals, Definite integrals involving sines and cosines.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
Text books 1. MATHE 2. COMPLI Suggested 3. Magnus Web Refer Digital platt https://open http://heeco	MATICAL ANALYSIS BY SHANT EX VARIABLE AND APPLICATIO Readings: Robert, Fundamental Mathematical A	NS BY BROV nalysis, Sprin / MOOCS/Ope <u>px</u>	ger Undergraduate Mathe enstax.org	matics Series	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

Ш	BSC (NEP) -III YEAR,	P-11A	Course Ou	itcomes:							
	V SEM	INTEGRAL & PARTIAL		e different types of Linear integral		d partial differential equ	ations for the imp	art knowledge of			
		DIFFERENTIAL		n of practical problems of applied mat							
	T:04	EQUATIONS	2. Understa and Cauchy	Fredholm, Volterra	rra, Singular, Hilbert						
			3. Explain of variables	A	ons of various problems related to Wave, Laplace and Diffusion equations by the method of separation						
				4. Deal with problems in applied mathematics, theoretical mechanics and mathematical physics and engineering.							
			UNIT-1	Origin of first order partial differential equations. Partial differential equations of the first order and degree one, Lagrange's solution, Partial differential equation of first order and degree greater than one. Cauchy's method of characteristic, Charpit's method of solution, Surfaces orthogonal to the given system of surfaces.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
			UNIT-II	Origin of second order PDE, Solution of partial differential equations of the second and higher order with constant coefficients, Classification of linear partial differential equations of second order, Solution of second order partial differential equations with variable coefficients, Monge's method of solution, Cauchy's problem for Homogenous wave equation, Properties of Harmonic	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			

	function, Methods of separation of variable for solving Laplace, wave and diffusion equations.					
UNIT-III	Linear Integral Equations- Definition and Classification of conditions, Special kinds of Kernels, Eigen values and Eigen functions, Convolution integral, Inner product, Integral equations with separable Kernels. Reduction to a system of algebraic equations.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
UNIT-IV	Fredholm alternative, Fredholm Theorem, Fredholm alternative theorem, Approximate method, Method of successive approximations, Iterative scheme. Solution of Fredholm and Volterra integral equation, Results about resolvent Kernel	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
Text Books 1. I.N. Snee	Reference book: Text Books: 1. I.N. Sneddon: Elements of Partial Differential Equations, Mc -Graw Hill, 1988. 2. Ram P. Kanwal, Linear Integral Equations (2nd ed.), Birkhäuser, Boston.					
Delhi, 2005	nath: An Elementary Course in Parti 5. nt U: Partial Differential Equations of		•	C		

			https://open http://heeco	igital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses http://heecontent.upsdc.gov.in/SearchContent.aspx https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science							
ш	BSC (NEP) -III YEAR, V SEM CREDITS-4 T:04	P-11 B DISCRETE MATHEMATICS	 Lattices a Boolean Graphs, t Display science. Elaborate 	 <u>Course Outcomes:</u> 1. Lattices and their types. 2. Boolean algebra, switching circuits and their applications. 3. Graphs, their types and its applications in study of shortest path algorithms. 4. Display familiarity with the mathematical models which are the integral part of the hardware and softwa science. 5. Elaborate and expand their understanding of the tools helpful in the implementation of circuit design, AI algorithms. 							
			UNIT-1	Propositional Logic- Proposition logic, basic logic, logical connectives, truth tables, tautologies, contradiction, normal forms (conjunctive and disjunctive), modus ponens and modus tollens, validity, predicate logic, universal and existential quantification, proof by implication, converse, inverse contrapositive, contradiction, direct proof by using truth table.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
			UNIT-II	Boolean Algebra- Basic definitions, Sum of products and products of sums, duality principle, Boolean functions, Logic gates and Karnaugh maps. Lattice, Duality, types of lattices, sublattices, bounded lattices, distributive lattices,	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			

UNIT-III	complemented lattices, modular lattices, join irreducible elements. Combinatorics- Inclusion- exclusion, recurrence relations (nth order recurrence relation with constant coefficients, Homogeneous recurrence relations, Inhomogeneous recurrence relations), generating function (closed form expression, properties of G.F., solution of recurrence relations using G.F.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	solution of combinatorial problem using G.F.) Finite Automata- Basic concepts	MIN	OFFLINE TEACHING	STUDENTS WILL	EVALUATION
	of automation theory, Deterministic Finite Automation (DFA), transition function, transition table, Non Deterministic Finite Automata (NDFA), Mealy and Moore machine, Minimization of finite automation.	06 LECTURES	METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

			 Discrete Discrete Mendelse John E. H and Computing Suggested Arnold B K. H. Ro Web Referred Digital plattic https://openne http://heecond 	Text books: Image: Construct books: 1. Discrete Mathematics by C. L.Liu. Image: Construct books: 2. Discrete Mathematics with computer application by Trembley and Manohar. Image: Construct books: 3. Mendelson, Elliott: Introduction to Mathematical Logic, Chapman & Hall, 1997 Image: Construct books: 4. John E. Hoprcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction to Automata Theory, Languages and Computation, Pearson Education, 2000 Suggested Readings: 5. Arnold B. H.: Logic and Boolean Algebra, Prentice Hall, 1962 C.K. H. Rosen: Discrete Mathematics and its applications, MGH 1999 Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses https://heecontent.upsdc.gov.in/SearchContent.aspx https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science						
ш	BSC (NEP) -III YEAR, V SEM CREDITS-4 T:04	P-11 C NUMBER THEORY	2. Solving l	t <mark>tcomes:</mark> knowledge of primes, congruences, q Diophantine equations. enerating functions and recurrence re		es and primitive roots.				
			UNIT-1	Divisibility; Euclidean algorithm; primes; congruences; Fermat's theorem, Euler's theorem and Wilson's theorem; Fermat's quotients and theirelementary consequences; solutions of congruences; Chinese remainder theorem; Euler's phi-function. Congruences	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		

UN	NIT-II	Congruence modulo powers of prime; primitive roots and their existence; quadratic residues; Legendre symbol, Gauss' lemma about Legendre symbol; quadratic reciprocity law; proofs of various formulations; Jacobi symbol.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	NIT-III	Diophantine Equations, Solutions of $ax + by = c$, $xn + yn = zn$; properties of Pythagorean triples; sums of two, four and five squares; assorted examples of diophantine equations.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	NIT-IV	Generating Functions and Recurrence Relations, Generating Function Models, calculating coefficient of generating functions, Partitions, Exponential Generating Functions, A Summation Method. Recurrence Relations: Recurrence Relation Models, Divide and conquer Relations, Solution of Linear, Recurrence Relations, Solution of Inhomogeneous Recurrence Relations, Solutions with Generating Functions.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

			Reference book: Text books: 1. Niven, I., Zuckerman, H. S. and Montgomery, H. L. (2003) An Int. to the Theory of Numbers (6th edition) John Wiley and sons, Inc., New York. 2. Burton, D. M. (2002) Elementary Number Theory (4th edition) Universal Book Stall, New Delhi. 3. Balakrishnan, V. K. (1996) Introductory Discrete Mathematics, Dover Publications. Suggested Readings : 4. Balakrishnan, V. K. (1994) Schaum's Outline of Theory and Problems of Combinatorics Including Concepts of Graph Theory, Schaum's Outline Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses https://heecontent.upsdc.gov.in/SearchContent.aspx https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
*	NOTE: TH	IERE WILL BI	E AN INTERNSHIP / TERM ASSIGNMENT IN V SEMESTER (NEP).	
	✓ Cred	it :04		

COLLEGE: MBP GOVT. P.G. COLLEGE, ASHIANA, LUCKNOW

ACADEMIC CALENDAR : SESSION- (2023-2024)

NAME OF TEACHER: DR. POONAM BAJPAI

DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: <mark>BSC(NEP)-III YEAR (VI SEMESTER)</mark> (APPLICABLE FROM JANUARY 2024) <mark>EACH PAPER CARRIES 100 MARKS (4</mark> CREDITS)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY/ WEEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL		
01	02	03	04	05	06	07	08	09		
I	BSC (NEP) -III YEAR, VI SEM CREDITS-4	<mark>P −12</mark> ADVANCED ALGEBRA	 Construct Understa 	Atcomes: structure of an abelian group of a given order. to the splitting field extension of a given polynomial. and the interplay of group theory and field theory. The the minimal polynomial of an algebraic element.						
	T:04		UNIT-1	Series of groups, Schreier theorem, Jordan Holder theorem, solvable groups, Nilpotent groups, Insolvability of Sn for n>5,	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
			UNIT-11	Finite Abelian groups, primary decomposition theorem, basis theorem, fundamental theorem of finite Abelian group, elementary divisors and invariant factors,	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		

			UNIT-111	Field extensions: finite extension, finitely generated extension, algebraic extension, simple extension, transcendental extension, finite field.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
			UNIT-1V	Splitting field, algebraically closed field, normal extension, separable extension, primitive element theorem. Galois theory- Galois group, Galois extension, Fundamental theorem of Galois theory, Artin's theorem, Fundamental theorem of algebra (Algebraic Proof)	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
II	BSC (NEP)	P-13	References: Text Books: 1. V. Sahai & V. Bist: Algebra, Fourth Edition, Narosa. 2. J. A. Gallian, Contemporary Abstract Algebra, 4th edition, Narosa 3. DJS Robinson, An Introduction to Abstract Algebra, Hindustan Book Agency. Suggested Readings: 4. J. B. Fraleigh: A first course in Abstract algebra, Narosa 5. S. Lang: Algebra, Addison Wesley. Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses http://heecontent.upsdc.gov.in/SearchContent. https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science						
Ш	BSC (NEP) -III YEAR, VI SEM CREDITS-4	P-13 DIFFERENTIAL GEOMETRY & TENSOR ANALYSIS	2. Understa	tcomes: he concept of differentiable geometry nd the concepts of tensors in differen rious concept of differential calculus	tiable geometi	y.			

T:04	UNIT-1	Local theory of curves-Space curves, Examples, Plane Curves, tangent and normal and binormal, Osculating Plane, normal plane and rectifying plane, Helices, Serret-Frenet apparatus, contact between curve and surfaces, tangent surfaces, involutes and evolutes of curves, Bertrand curves, Intrinsic equations, fundamental existence theorem for space curves.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	UNIT-II	Metric-first fundamental form and arc length, Direction coefficients, families of curves, intrinsic properties, geodesics, canonical geodesic equations, normal properties of geodesics, geodesics curvature, Gauss- Bonnet theorem, Gaussian curvature, normal curvature, Meusneir's theorem, mean curvature, Gaussian curvature, umbilic points, lines of curvature, Rodrigue's formula, Euler's theorem.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOC TESTS AND ASSIGNMENTS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE AND DISCUSSIONS
	UNIT-III	Tensor algebra: Vector spaces, the dual spaces, tensor product of vector spaces, transformation formulae, contraction, special tensor, inner product, associated tensor. Tensor Analysis: Contravariant and covariant vectors and tensors, Mixed tensors, Symmetric and	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

	skew-symmetric tensors, Algebra of tensors, Contraction and inner product, Quotient theorem, Reciprocal tensors, Christoffel's symbols, Covariant differentiation. Gradient of scalars, Divergence of a contra-variant vector, covariant vector and conservative vectors, Laplacian of an invariant, curl of a covariant vector, irrotational vector, Riemannian space, Riemannian curvatures and their properties, Ricci tensor, and scalar curvature, Einstein space and Einstein tensor, Geodesics.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
Text book1. T.J. Wi2. S.Lang3. B. O'Ne4. R.S. MiPothishalSuggeste5. DavidWeb RefeDigital plhttps://ohttp://he	llmore, An introduction to Differential , Fundamentals of Differential eil, Elementary Differential Geo shra, A Course in Tensors with a 1988. d Readings: C. Kay, Tensor Analysis, Schaur	Geometry; S metry, 2nd I Application n's Outline s YAM/ MOO <u>1rses</u> ontent.aspx	Springer, 1999. Edition, Academic pre to Riemannian Geom series McGraw Hill 19 CS/Openstax.org	ess, 2006. netry,	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

ш	BSC (NEP) -III YEAR, VI SEM CREDITS-4 T:04	P-14 A ADVANCED DIFFERENTIAL EQUATIONS	differenti equations 2. Concep	he system of 1st order differen al equations, oscillatory equati	on, stability nature of cr	and unstability of lin	ear and non-linear system of				
		τ	UNIT-1	Linear System- Introduction, properties of linear homogeneous systems, Abel-Liouville formula, Periodic linear System, Floquet's theorem, Solution of nth order linear homogeneous equation with variable coefficients.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
			UNIT-II	Inhomogeneous linear system, nth order linear non- homogeneous equation with variable coefficients, Hurwitz's theorem, Non-linear system, Volterra's prey & predator equation, Non linear equations: Autonomous system.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
			UNIT-III	The phase plane & its phenomena, types of critical points & Stability, Critical points & stability for linear system, stability by Liapunov's direct method. Green function, Construction of Green functions, Green function of homogeneous and non-homogeneous end	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			

	conditions, Strum Liouville systems.					
	Second order differential equation: Introduction, Preliminary results, Boundedness of solutions, Oscillatory equation, number of zeroes, Pruffer's transformation, Strum theorem, Strum's comparison theorem.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
REFERENCE BOOK:Text books:1. G. F. Simmons: Differential Equation, Tata McGraw-Hill2. B. Rai, D. P. Chaudhary, H.I. Freedman: A course in Ordinary Differential Equations, Narosa Publishing House.3. S. L. Ross: Differential Equations, Wiley Indian, 2004Suggested Readings: 4.E. A. Coddington: An Introduction to Ordinary Differential Equations Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses http://heecontent.upsdc.gov.in/SearchContent.aspx						

Ш	BSC (NEP) -III YEAR, VI SEM CREDITS-4 T:04	P-14 B OPERATIONS RESEARCH	 <u>Course Outcomes:</u> 1. Be able to understand the application of OR and frame a LP Problem with solution 2. Be able to build and solve Transportation and Assignment problems using appropriate method. 3. Be able to design and solve simple models of CPM and queuing to improve decision making and develop critical thinking and objective analysis of decision problems. 4. to take best course of action out of several alternative courses for the purpose of achieving objectives by applying game theory and sequencing models. 					
		UNI	UNIT-1	Linear programming problems, Slack and surplus variables, Statement of general Linear programming Problems, Standard and matrix forms of linear programming problem, Basic feasible solution.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-II	Convex sets, Fundamental theorem of linear programming, Simplex method. Artificial variables, Big-M method, Two- phase method, Revised simplex method.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-III	Resolution of degeneracy, Duality in linear programming problems, Dual simplex method, Primal-dual relation analysis, integer programming.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

	UNIT-IV	Transportation problems, assignment problems, Queuing Theory, Markov Chains, PERT and CPM, Optimization and constrained Optimization using Langrange's Multiplier.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
	Text boo 1. Hamdy 2. Kanti S 29 Suggeste 3. G. Had Web Refe Digital pl https://o http://he	REFERENCE BOOK: Text books: 1. Hamdy A. Taha, Operations Research: An Introduction, 10th Edition, Pearson 2. Kanti Swaroop, P. K. Gupta, Manmohan, Operations Research, Sultan Chand					
♦ NOTE: 7	HERE WILL BE A MI	NOR PROJECT IN VI SEM	ESTER (N	EP).			